Computational Higher Type Theory IV: Inductive Types
نویسندگان
چکیده
This is the fourth in a series of papers extending Martin-Löf’s meaning explanation of dependent type theory to higher-dimensional types. In this installment, we show how to define cubical type systems supporting a general schema of cubical inductive types, inductive types whose constructors may take dimension parameters and may have specified boundaries. Using this schema, we are able to specify and implement many of the higher inductive types which have been postulated in homotopy type theory, including homotopy pushouts, the torus, W-quotients, truncations, and arbitrary localizations. We also construct one indexed inductive type, the fiber family of a term. Using the fiber family, it is possible to define an identity type whose eliminator satisfies an exact computation rule on the reflexivity constructor. We believe that the techniques used to construct the fiber family could be straightforwardly combined with our schema for inductive types in order to give a schema for indexed cubical inductive types. The addition of higher inductive types and identity types makes computational higher type theory a model of homotopy type theory, capable of interpreting almost all of the constructions in the HoTT Book [41] (with the exception of general indexed inductive types and inductive-inductive types). This is the first such model with an explicit canonicity theorem stating that all closed terms of boolean type evaluate either to true or to false.
منابع مشابه
Higher Inductive Types in Cubical Computational Type Theory
In homotopy type theory (HoTT), higher inductive types provide a means of defining and reasoning about higher-dimensional objects such as circles and tori. The formulation of a schema for such types remains a matter of current research. We investigate the question in the context of cubical type theory, where the homotopical structure implicit in HoTT is made explicit in the judgmental apparatus...
متن کاملInductive and Functional Types in Ludics
Ludics is a logical framework in which types/formulas are modelled by sets of terms with the same computational behaviour. This paper investigates the representation of inductive data types and functional types in ludics. We study their structure following a game semantics approach. Inductive types are interpreted as least fixed points, and we prove an internal completeness result giving an exp...
متن کاملInductive and Coinductive Session Types in Higher-Order Concurrent Programs
We develop a theory of inductive and coinductive session types in a computational interpretation of linear logic, enabling the representation of potentially infinite interactions in a compositionally sound way that preserves logical soundness, a major stepping stone towards a full dependent type theory for expressing and reasoning about session-based concurrent higher order distributed programs...
متن کاملMutual and Higher Inductive Types in Homotopy Type Theory
Inductive types can be cleanly represented internally as W-types [14] [20], that is, as initial algebras of containers [1]. In this paper, we give a similar presentation that extends the notion of W-type to more general forms of induction, including mutually defined data types and higher inductive types.
متن کاملOn Higher Inductive Types in Cubical Type Theory
Cubical type theory provides a constructive justification to certain aspects of homotopy type theory such as Voevodsky’s univalence axiom. This makes many extensionality principles, like function and propositional extensionality, directly provable in the theory. This paper describes a constructive semantics, expressed in a presheaf topos with suitable structure inspired by cubical sets, of some...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1801.01568 شماره
صفحات -
تاریخ انتشار 2018